Defense-related signaling by interaction of arabinogalactan proteins and beta-glucosyl Yariv reagent inhibits gibberellin signaling in barley aleurone cells.
نویسندگان
چکیده
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins present at the plasma membrane and in extracellular spaces. A synthetic chemical, beta-glucosyl Yariv reagent (beta-GlcY), binds specifically to AGPs. We previously reported that gibberellin signaling is specifically inhibited by beta-GlcY treatment in barley aleurone protoplasts. In the present study, we found that beta-GlcY also inhibited gibberellin-induced programmed cell death (PCD) in aleurone cells. We examined the universality and specificity of the inhibitory effect of beta-GlcY on gibberellin signaling using microarray analysis and found that beta-GlcY was largely effective in repressing gibberellin-induced gene expression. In addition, >100 genes were up-regulated by beta-GlcY in a gibberellin-independent manner, and many of these were categorized as defense-related genes. Defense signaling triggered by several defense system inducers such as jasmonic acid and a chitin elicitor could inhibit gibberellin-inducible events such as alpha-amylase secretion, PCD and expression of some gibberellin-inducible genes in aleurone cells. Furthermore, beta-GlcY repressed the gibberellin-inducible Ca2+-ATPase gene which is important for gibberellin-dependent gene expression, and induced known repressors of gibberellin signaling, two WRKY genes and a NAK kinase gene. These effects of beta-GlcY were also phenocopied by the chitin elicitor and/or jasmonic acid. These results indicate that gibberellin signaling is under the regulation of defense-related signaling in aleurone cells. It is also probable that AGPs are involved in the perception of stimuli causing defense responses.
منابع مشابه
Crosstalk of arabinogalactan protein, auxin, gibberellin, and callose in Al-treated Tea seedlings
Arabinogalactan proteins (AGP) are a class of cell surface plant peptidoglycans which have been implicated in root elongation and signal transduction pathways. AGPs function not only as markers of cellular identity but also as signaling molecules, which might initiate signal transduction. Aluminum promotes the elongation of tea (Camellia sinensis L.) roots. Although some mechanisms by which Al ...
متن کاملDisruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana.
The cortical array of microtubules inside the cell and arabinogalactan proteins on the external surface of the cell are each implicated in plant morphogenesis. To determine whether the cortical array is influenced by arabinogalactan proteins, we first treated Arabidopsis roots with a Yariv reagent that binds arabinogalactan proteins. Cortical microtubules were markedly disorganized by 1 microM ...
متن کاملYariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement.
Arabinogalactan proteins (AGPs) are a family of highly glycosylated, hydroxyproline-rich glycoproteins implicated in various aspects of plant growth and development. (beta-D-glucosyl)3 and (beta-D-galactosyl)3 Yariv phenylglycosides, commonly known as Yariv reagents, specifically bind AGPs in a non-covalent manner. Here (beta-D-galactosyl)3 Yariv reagent was added to Arabidopsis thaliana cell s...
متن کاملβ-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins.
Yariv phenylglycosides [1,3,5-tri(p-glycosyloxyphenylazo)-2,4,6-trihydroxybenzene] are a group of chemical compounds that selectively bind to arabinogalactan proteins (AGPs), a type of plant proteoglycan. Yariv phenylglycosides are widely used as cytochemical reagents to perturb the molecular functions of AGPs as well as for the detection, quantification, purification, and staining of AGPs. How...
متن کاملBinding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures.
Arabinogalactan-proteins (AGPs) are cell wall proteoglycans and are widely distributed in the plant kingdom. Classical AGPs and some nonclassical AGPs are predicted to have a glycosylphosphatidylinositol lipid anchor and have been suggested to be involved in cell-cell signaling. Yariv phenylglycoside is a synthetic probe that specifically binds to plant AGPs and has been used to study AGP funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 49 2 شماره
صفحات -
تاریخ انتشار 2008